

FG Wilson – Powering The World

FG WILSON ELECTRIFYING THE WORLD

Founded in 1966 by Fred Wilson with just six employees, today FG Wilson is a leading global provider of generator sets. The world has changed much in that time but the FG Wilson formula of quality, support and value still remains the same more than 50 years later.

Today's range of FG Wilson generator sets builds on our long heritage. Each one of our products sees extensive research and development testing in modern world-class facilities and all are built to designs which have been tried and tested in the toughest of environments. From 6.8 to over 2,500 kVA, FG Wilson offers one of the widest ranges of diesel-fuelled generator sets, built in modern facilities in Europe, Asia and Latin America.

Over our 50 year history, FG Wilson generator sets have been installed in more than 150 countries worldwide by organisations and businesses just like yours. You'll find our generator sets installed in many of the world's most iconic buildings, in hospitals, banks, airports, data centres, factories, construction sites, hotels, offices and telecommunications networks, quietly guaranteeing that they are never without electric power.

Our expertise is built on over 600,000 generator sets installed globally since 1990 alone, in a multitude of applications, in all environments and with a combined power output greater than that of the entire UK mains electricity supply. Today, when you choose one of our products, you benefit from that hard-earned experience.

GLOBAL MANUFACTURING FACILITIES

UK

China

4

Hosur, **India**

UNDERSTANDING CUSTOMER NEEDS

At FG Wilson, we've been building and installing generator sets for half a century. The most important things we've learned in that time are that every project has its own individual needs and that working through a project means not just building the metal but also building relationships and understanding people who work with generator sets.

And once you start using our generator sets on-site, you'll see that they are robust, highly corrosion resistant, fully weather resistant and allow easy access for maintenance.

When your power needs are more challenging than normal specifications, FG Wilson's Power Solutions Team is dedicated to providing bespoke solutions to meet complex power needs on a project-by-project basis. Our Solutions offerings include diesel, gas, bi-fuel and high voltage generator sets. Key generator set systems including generator controls, PLCs, synchronising, cooling systems and enclosures can all be customised to suit any requirement.

QUALITY COMES AS STANDARD

Since 1990 we've installed well over 600,000 generator sets with a total capacity of almost 90 GW - more than the total installed mains electricity capacity of a country like the UK. With that number of machines across the world, we take no risks with quality.

This means we only buy components which we have carefully tested and that we work with world-leading manufacturing processes, right through to extensive post production testing and pre-delivery inspections. No one is more serious about quality.

All our manufacturing facilities have been awarded ISO 9001 and ISO 14001 certification in recognition of our manufacturing and environmental standards. This means that our products and services are safe, reliable and of world-class quality.

With enterprise-wide manufacturing standards such as MQ 12005 Gold and Caterpillar Production Systems (CPS), we use efficient manufacturing processes to produce cost-effective, quality products.

Our facility in Tianjin, China, has also been awarded LEED Gold certification (Leadership in Energy and Environmental Design) for its environmental standards and energy efficiency.

INDUSTRY LEADING PRODUCTS

In the early 1980s, FG Wilson was among the first to bring mass-scale production to generator sets. Today our designs have moved on into a new century and that philosophy of our founders remains as strong as ever: self-contained generator sets which are easy to install and operate, designed for a long and productive working life and which represent value for money.

Our product range covers power outputs from 6.8 – 2,500 kVA and an extensive list of options means that our standard range can be configured in a huge number of ways. From day one, we've always thought of a generator set as an entire package. This kind of thinking has helped us do some truly innovative things, like being one of the first volume manufacturers to integrate an entire generator set package inside the enclosure, well over 30 years ago.

And all FG Wilson products worldwide, are fully supported by the FG Wilson warranty programme and by your local FG Wilson dealer, which means just one call for technical advice, genuine parts and ongoing maintenance support.

POWER FOR REMOTE LOCATIONS

The FG Wilson Remote Power range has been designed with a strong focus on operating costs. It's perfect for telecoms users or indeed for anyone who needs to install a generator set in places which are remote or difficult to access.

From top to bottom, the range is designed to make life easier for you:

- » 1,000 hour service intervals mean you need to make fewer site visits
- » 600, 1,000 & 2,000 litre fuel tanks so you need to refuel less often
- » Three levels of sound attenuation ensure that the range meets local noise regulations and that you can choose the enclosure which is right for your needs
- » New LCD control panels with optional remote communications make day to day operations simpler. The ability to monitor units from the Telecom NOC maximises uptime and means you can prepare for more effective site visits and minimise servicing costs

The range has undergone rigorous validation testing and is built for a long and productive life.

SMALL PRODUCT RANGE (< 220 KVA)

	eonsilqmoD slll U3	×	>	>	×	>	>	>	>	>	>	>	>	×	×	>	>	>	>	×	>	>	×	>	×	>	×	×	×	
	Ingress ^P rotection	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	
ils.	ssel) noiteluzni	т	Т	т	т	Т	Т	т	т	Т	Н	Т	Т	т	Н	н	Т	Т	Н	Н	Н	Т	Т	т	т	Т	Т	Т	Т	
or Deta	No. of Bearings	-	-	-	-	-	-		-	1	1	-	-	-	1	1	-	-	1	1	1	-	-		-	-	-		-	
Alternator Details	IsboM roternstlA	LLB1114B	LL1114D	LLB1114D	LL1114B	LL1114B	LL1114B	LLB1114F	LLB1114F	LL1114D	LL1114D	LLB1114L	LLB1114L	LL1114M	LLB1114M	LLB1114M	LLB1114M	LL1114H	LL1114H	LL1114M	LL1114M	LL1114M	LLB1514J	LLB1514J	MJB 160 MB4	MJB 160 MB4	LLB1514P	LLB1514P	MJB 200 SB4	
	Alternator	LS	LS	LS	ΓS	LS	LS	LS	LS	LS	LS	LS	LS	ΓS	LS	ΓZ	LS	LS	LS	LS	LS	LS	LS	LS	MA	ΜA	LS	LS	ΜA	
ions	(kg) theidht (kg)	242	242	308	235	235	308	319	384	312	308	381	441	339	389	389	454	376	441	389	389	454	669	669	712	712	779	771	810	
Weights & Dimensions	(mm) thgi9H	895	895	966	895	895	966	895	1054	895	1054	895	1115	895	895	895	1115	895	1115	1115	895	1115	1229	1229	1229	1229	1336	1336	1336	
ghts & l	(mm) dth	860	860	620	860	860	620	860	620	860	620	860	620	860	860	860	620	860	620	620	860	620	760	760	760	760	760	760	760	
Weig	(աա) կքնսәղ	1500	1500	1400	1500	1500	1400	1500	1400	1500	1400	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1570	1570	1570	1570	1680	1680	1680	
	(14/1) Ydbnet2 zH 03		3.3	3.3	1	3.4	3.4	4.8	4.8	4.9	4.9	5.6	5.6		1	6.3	6.3	5.7	5.7	I.	6.5	6.5	9.0		9.1		13.7	1	13.4	
umption	(1/1/1) əminq zH 0ð		2.9	2.9	1	3.0	3.0	4.3	4.3	4.3	4.3	5.2	5.2	,	,	5.7	5.7	5.2	5.2	1	5.8	5.8	8.1		8.1		11.8	ı	11.9	
Fuel Tank / Consumption	(14/1) ydbnet2 zH 02	2.9	2.8	2.8	2.9	2.9	2.9	4.1	4.1	4.0	4.0	4.6	4.6	4.7	5.6	5.5	5.5	4.8	4.8	6.1	5.9	5.9	7.5	7.9	7.7	8.2	11.4	11.3	11.7	
uel Tanl	(1/1/) 9mir9 zH 02	2.6	2.5	2.5	2.6	2.6	2.6	3.6	3.6	3.7	3.7	4.3	4.3	4.1	5.0	4.9	4.9	4.4	4.4	5.4	5.3	5.3	6.9	7.4	6.9	7.4	10.2	10.2	10.5	
	Fuel Tank (L)	N/A	62	62	N/A	62	62	62	62	62	62	66	66	N/A	N/A	66	66	66	66	ı	66	66	71	71	71	71	145	145	145	
	Circuit Breaker	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCB	3 Pole MCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCB / 3 Pole MCCB	
	Cooling Sys Capacity (L)	5.2	5.2	5.2	5.2	-C	Ŀ	Ŀ2	5	5	5	7	~	9	7	7	7	7	7	7	7	7	10	10	10	10	10	13	10	- Leroy Somer
	Total Oil Capacity (L)	4.9	4.9	4.9	4.9	4.9	4.9	9	9	9	9	10.6	10.6	9	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	8.3	8.3	8.3	8.3	8.3	8.3	8.3	Leroy
rical	Induction	ΑN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	F	⊢	⊢	LS I
/ Elect	Governing Type	Σ	Σ	Σ	Z	Z	Σ	Σ	Σ	M	Σ	X	Σ	Σ	Μ	Μ	Z	M	Μ	Μ	Μ	Z	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Marel
Engine / Electrica	Cylinders / Alignment	3 / In-line	3 / In-line	3 / In-line	3 / In-line	3 / In-line	3 / In-line	3 / In-line	3 / In-line	3 / In-line	3 / In-line	4 / In-line	4 / In-line	3 / In-line	4 / In-line	4 / In-line	4 / In-line	4 / In-line	4 / In-line	4 / In-line	4 / In-line	4 / In-line	3 / In-line	3 / In-line	FG - FG Wilson Ma - Marelli					
	Battery Charger (A)	15	40	6	15	40	40	65	65	65	65	65	65	6	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	FG Wi
	(v) 90510V	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	3 12	12	3 12	1 12	/3 12	1 12	ġ
	ləboM ənipn∃	403A-11G1	403D-11G	403D-11G	403A-11G1	403D-11G	403D-11G	403D-15G	403D-15G	403D-15G	403D-15G	404D-22G1	404D-22G1	403A-15G2	404A-22G1	404D-22G	404D-22G	404D-22G1	404D-22G1	404D-22G	404D-22G	404D-22G	1103A-33G1	1103D-33G3	1103A-33G1	1103D-33G3	1103A-33TG1	1103C-33TG2/3	1103A-33TG1	
	Control Panel	DSE4520	DSE4520	DCP10	DSE4520	DSE4520	DCP10	DSE4520	DCP10	DSE4520	DCP10	DSE4520	DCP10	DSE4520	DSE4520	DSE4520	DCP10	DSE4520	DCP10	DSE4520	DSE4520	DCP10	DCP10							
	(v) zH 09		240	240	1	220	220	240	240	220	220	240	240	1	1	240	240	220	220	I	220	220	240		480	ı	240	1	480	
	(v) zH OS	230	230	230	400	400	400) 230) 230	400	400) 230) 230	400	230	1 230	1 230	400	400	400	400	400) 230	230	400	400	230	230	400	
Generator Set	(wy/avy) zH 0ð yddnbt2	•	8.8/ 8.8	8.8/ 8.8		11.0/ 8.8	11.0/ 8.8	13.0/ 13.0	13.0/ 13.0	16.5/ 13.2	16.5/ 13.2	17.0/ 17.0	17.0/ 17.0	'	1	19.4/ 19.4	19.4/ 19.4	22.0/ 17.6	22.0/ 17.6	1	25.0/ 20.0	25.0/ 20.0	30.0/ 30.0		37.5/30	1	45.0/ 45.0	1	56.3/ 45.0	
Gener	(wʌ/ʌvʌ) zH 0ð əmir9		8.0/ 8.0	8.0/ 8.0	1	10.0/ 8.0	1 0.0/ 8.0	12.0/12.0	12.0/12.0	15.0/12.0	15.0/12.0	15.5/ 15.5	15.5/ 15.5	-	1	17.6/ 17.6	17.6/ 17.6	20.0/ 16.0	20.0/ 16.0	ı	22.5/ 18.0	22.5/ 18.0	27.0/ 27.0		33.8/ 27		40.0/ 40.0	,	50.0/ 40.0	
	(wy/ava) zH 02 yddnaf2	7.5/7.5	7.5/7.5	7.5/7.5	9.5/7.6	9.5/7.6	9.5/ 7.6	11.0/11.0	11.0/11.0	13.5/ 10.8	13.5/ 10.8	14.0/14.0	14.0/14.0	16.0/ 12.8	16.5/ 16.5	16.5/ 16.5	16.5/ 16.5	18.0/ 14.4	18.0/ 14.4	22.0/ 17.6	22.0/ 17.6	22.0/ 17.6	26.0/ 26.0	26.0/ 26.0	33.0/ 26.4	33.0/ 26.4	40.0/ 40.0	40.0/ 40.0	50.0/ 40.0	Mechanical
	(wayava) zH02 əmiyq	6.8/ 6.8	6.8/ 6.8	6.8/6.8	8.5/6.8	8.5/ 6.8	8.5/6.8	10.0/ 10.0	10.0/ 10.0	12.5/ 10.0	12.5/ 10.0	13.0/ 13.0	13.0/ 13.0	14.5/ 11.6	15.0/ 15.0	15.0/ 15.0	15.0/ 15.0	16.5/ 13.2	16.5/ 13.2	20.0/ 16.0	20.0/ 16.0	20.0/ 16.0	24.0/ 24.0	24.0/ 24.0	30.0/ 24.0	30.0/ 24.0	36.0/ 36 .0	36.0/ 36.0	45.0/ 36.0	- Electronic ME - Mechanica
	Generator Set Model	(skid)	P7.5-4S (skid)	P7.5-4S	P9.5-1 (skid)	P9.5-4 (skid)	P9.5-4	P11-65 (skid) 1	P11-65	P13.5-6 (skid) 1	P13.5-6	P14-6S (skid) 1	P14-65	P16-1 (skid) 1	P16.5-1S (skid) 1	P16.5-6S (skid) 1	P16.5-65	P18-6 (skid) 1	P18-6	P22-1 (skid) 2	P22-6 (skid) 2	P22-6 2	P26-3S 2	P26-65 2	P33-3 3	P33-6 3	P40-35 3	P40-45 3	P50-3	EL - Electri

TAA - Turbocharged Air-Air TAW - Turbo Air To Water Charge Cooled

NA - Naturally Aspirated T - Turbocharged

SMALL PRODUCT RANGE (< 220 KVA)

	eonsilqmoD sIII UB	×	×	×	×	>	×	>	×	>	×	>	×	>	×	×	>	>	×	>	×
	Ingress Protection	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23
ails	ssal) noitaluzni	I	т	т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	т	Т	Т	Т	Т	Т
or Deta	No. of Bearings	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Alternator Details	leboM roternetIA	MJB 200 SB4	LLB3114D	MJB 200 SB4	MJB 200 SB4	LLB3114D	MJB 200 MA4	MJB 200 MA4	MJB 200 LA4	MJB 200 LA4	LLB3114H	LLB3114H	MJB 225 MA4	MJB 225 MA4	MJB 225 LA4	MJB 250 MA4	MJB 250 MA4	MJB 250 MA4	MJB 250 MB4	MJB 250 MB4	MJB 250 LA4
	Alternator	MA	LS	MA	MA	LS	MA	MA	MA	MA	LS	LS	MA	MA	MA	MA	MA	MA	MA	MA	MA
ons	Wet Weight (kg)	802	912	810	864	941	852	906	1002	1135	1131	1208	1132	1252	1428	1566	1611	1611	1650	1624	1735
Jimensi	(mm) 14gi9H	1336	1336	1336	1336	1336	1336	1336	1333	1398	1374	1449	1317	1435	1554	1554	1554	1554	1640	1640	1640
Weights & Dimensions	(mm) dtbiW	760	760	760	840	840	760	840	840	890	068	890	890	068	1010	1010	1010	1010	1010	1010	1010
Wei	(աա) կքնսəղ	1680	1680	1680	1870	1870	1680	1870	1870	1980	1980	1980	1980	1980	2450	2450	2450	2450	2510	2510	2510
-	(11/1) ydbnet2 zH 00	1	17.3	15.2	1		18.0	I.	23.2		28.8		29.0		36.7	41.6			50.6		
umptio	60 Th Prime (۱ /۱۸)		15.8	13.7	ı		16.3	ī	21.0		26.0	-	26.1	-	33.1	37.9		,	46.5		
, / Consi	(14/1) (dbnet2 zH 02	11.8	14.2	12.8	17.4	18.2	15.0	18.3	20.1	21.7	24.3	25.7	23.9	25.5	33.4	35.1	37.8	39.7	43.2	45.2	49.0
Fuel Tank / Consumption	50 Hz Prime (I/hr)	10.6	12.6	11.6	15.9	16.5	13.7	16.6	18.2	20.2	22.1	24.2	21.7	23.8	29.9	32.4	35.2	36.9	39.8	41.3	45.1
	(L) AneT ləu	145	145	145	180	180	145	180	180	218	218	218	218	218	327	327	327	327	394	394	394
	Circuit Breaker	3 Pole MCB	3 Pole MCCB	3 Pole MCB / 3 Pole MCCB	3 Pole MCB	3 Pole MCCB	3 Pole MCB / 3 Pole MCCB	3 Pole MCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB
	Cooling Sys Capacity (L)	10	10	10	13	17	10	17	13	17	17	17	17	17	21	21	21	21	27	27	27
	Total Oil Capacity (L)	8.3	8.3	8.3	œ	∞	8.3	œ	8	8	8	8	∞	8	16.5	16.5	17.5	17.5	16.5	17.5	16.5
rical	Induction	Т	F	т	⊢	F	Т	⊢	Т	TAA	TAA	TAA	TAA	TAA	⊢	TAA	TAA	TAA	TAA	TAA	TAA
/ Elect	ουτου Τγρε	Μ	X	Μ	Z	X	M	N	M	Μ	ш	ш	ш	ш	X	M	M	ш	Z	E	Ш
Engine / Electr	Cylinders / Alignment	3 / In-line	3 / In-line	3 / In-line	4 / In-line	4 / In-line	3 / In-line	4 / In-line	4 / In-line	4 / In-line	4 / In-line	4 / In-line	4 / In-line	4 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line
	Battery Charger (A)	65	65	65	65	65	65	65	65	65	65	65	65	65	65	85	65	65	85	65	85
-	(v) 90ttage	3 12	2 12	2 12	'3 12	/3 12	2 12	/3 12	2 12	51 12	2 12	32 12	2 12	32 12	12	2 12	52 12	i 12	3 12	12	4 12
	ləboM ənipn∃	1103C-33TG2/3	1103A-33TG2	1103A-33TG2	1104C-44TG2/3	1104D-44TG2/3	1103A-33TG2	1104D-44TG2/3	1104A-44TG2	1104D-E44TAG1	1104C-44TAG2	1104D-E44TAG2	1104C-44TAG2	1104D-E44TAG2	1106A-70TG1	1106A-70TAG2	1106D-E70TAG2	1106D-E70TAG3	1106A-70TAG3	1106D-E70TAG4	1106A-70TAG4
	Control Panel	DCP10	DCP10	DCP10	DCP10	DCP10	DCP10	DCP10	DCP10	PW1.1	DCP10	PW1.1	DCP10	PW1.1	DCP10	DCP10	PW1.1	PW1.1	DCP10	PW1.1	DCP10
	(v) zH 09		240	480	1		480	1	480		240		480		480	480	1		480		1
	(v) zh os	400	230	400	400	230	400	400	400	400	230	230	400	400	400	400	400	400	400	400	400
Generator Set	(wa\ava) zH 09 yddnaf2		60/ 60	62.5/50	T		75/ 60	ı	100/80	ı	99.5/ 99.5	ı	125/100	ı	165/ 132	188/ 150	I		219/ 175	1	-
Genera	(wa\/ava) zH 08 9mi19	,	55/ 55	56.3/ 45	ı		68.8/ 55	1	90/ 72	,	06 /06		113/ 90.4	ı	150/ 120	169/ 135	1	,	200/ 160		
	(wavava) zH 02 yddnb72	50/ 40	50/ 50	55/ 44	55/ 44	55/ 55	65/ 52	65/ 52	88/ 70.4	88/ 70.4	06 /06	06 /06	110/88	110/88	150/ 120	165/ 132	165/ 132	175/140	200/ 160	200/160	220/ 176
	(wavava) zH02 əmin9	45/ 36	45/ 45	50/40	50/ 40	50/ 50	60/ 48	60/ 48	80/ 64	80/ 64	82/ 82	82/ 82	1 00/ 80	1 00/ 80	135/ 108	150/ 120	150/ 120	160/128	180/ 144	180/144	200/ 160
	Generator Set Model	P50-4	P50-5S	P55-3	P55-4	P55-6S	P65-5	P65-6	P88-3	P88-6	P90-3S	P90-6S	P110-3	P110-6	P150-5	P165-5	P165-6	P175-2	P200-3	P200-6	P220-3

TAA - Turbocharged Air-Air TAW - Turbo Air To Water Charge Cooled

FG - FG Wilson Ma - Marelli LS - Leroy Somer

Opt - Optional

NA - Naturally Aspirated T - Turbocharged

EL - Electronic ME - Mechanical

MEDIUM PRODUCT RANGE (225 – 750 KVA)

	9206 SIII U3	×	×	×	>	×	×	×	×	>	×	×	×		×	×	×	
	Ingress Protection	IP23	IP21	IP21	IP23	IP21	IP21	IP21										
	sselD noiteluen	<u>ц</u> т	<u>н</u> н	<u>н</u> н	 	 	<u>н</u>	н	н	 	н	<u>щ</u> т	<u> </u>	<u>н</u> т	 	 	н	
Details	No. of Bearings	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	
Alternator Details	Alternator Model	MJB 250 LA4	MJB 250 LB4	MJB 250 LB4	LL5014J	LL5014J	MJB 250 LB4	LL5014L	LL5014J	LL5014J	LL5014J	EG315M-280N	EG315M-280N	LL6114C	EG315M-320N	EG315M-360N	EG315M-300N	
	Alternator	MA	MA	MA	LS	LS	MA	LS	LS	LS	LS	FG	Đ.	LS	Ð	Ð	FG	
sions	Wet Weight (kg)	2044	2084	2084	2426	2426	2084	2546	2426	2426	2390	3241	3241	3228	3253	3734	3241	
Weights & Dimensions	Height (mm)	1754	1754	1754	1771	1771	1754	1771	1771	1771	1771	2156	2156	2156	2156	2215	2156	
nts & D	Width (mm)	1030	1030	1030	1100	1100	1030	1100	1100	1100	1100	1131	1131	1131	1131	1131	1131	
Weigl	(աա) կքնսәղ	2662	2662	2662	3300	3300	2662	3300	3300	3300	3300	3800	3800	3800	3800	3800	3800	
	(14/1) (dbnst2 zH 03	23					64.9		72.3	82	80.4		88				101	
Fuel Tank / Consumption	(1/hr) 9min9 zH 08	48.5					59.1	ı	66.2	74.6	72.2	i.	80.9	1	1	1	89.1	
: / Consi	(אא) אלטההזצ בH 07		51.7	56	65.1	63.1		68.9				79		98.1	89.2	103.1		
uel Tank	50 Hz Prime (I/hr)	1	47.8	51.3	60.6	58.1		62.5				69.69		89.1	79.9	94		
ΡĹ	Luel Tank (L)	464	464	464	587	587	464	587	587	587	587	888	8888	888	8888	888	888	
	Circuit Breaker	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB													
	Cooling Sys Capacity (L)	33	33	33	36	36	33	36	36	36	36	45	45	45	45	58	45	omer
	Total Oil Capacity (L)	39	39	39	39	39	39	68	39	39	39	40	40	40	40	62	40	S - Leroy Some
cal	Induction	TAA	TAA	TAA	TAA	LS - Le												
Electric		ш (1)	ш	ш	ш	ш	ш	Ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	arelli
Engine / Electrica	Cylinders / Alignment	6 / In-line	6 / In-line	6 / In-line	6 / In-line	FG - FG Wilson Ma - Marelli												
	Battery Charger (A)	45	45	45	45	45	45	45	45	45	45	70	70	70	70	70	70	Wilso
		24	24	24	t 24	1 24	24	24	1 24	1 24	24	24	24	24	24	24	5 24	<u>G</u> - FG
	ləboM ənipn∃	1506A-E88TAG2	1506A-E88TAG2	1506A-E88TAG3	1506D-E88TAG4	1506A-E88TAG4	1506A-E88TAG3	1506A-E88TAG5	1506A-E88TAG4	1506D-E88TAG4	1506A-E88TAG5	2206A-E13TAG2	2206A-E13TAG5	2206D-E1 3TA- G3A	2206A-E13TAG3	2506A-E15TAG1	2206A-E13TAG6	
	Control Panel	PW1.1+	PW1.1+	PW1.1+	PW1.1+													
	(v) zH 09	480			1	1	480	I	480	480	480	1	480	1	1	i	480	
	(n) zH 05	,	400	400	400	400	ı	400		1	T	400	1	400	400	400	I	
Generator Set	(wy/avy) zH 0ð ydbnst2	250/ 200		,	T	I	313/ 250	I	344/ 275	375/ 300	375/ 300	I	438/ 350	,	T	1	500/ 400	
Gene	(кил.ки) хН 0д этілд	225/ 180	,	,	I.	ı	281/ 225	ı	313/ 250	338/ 270	338/ 270	I	400/ 320	,	1	,	438/ 350	1
	(kva/ava) zH 02 yddnaf2		250/ 200	275/220	300 / 240	300 / 240		330 / 264				400/320		450/360	450/360	500/400	1	Mechanica
	(wavava) zH 02 əmiya	1	230/ 184	250/ 200	275/220	275/220		300/ 240				350/ 280		400/ 320	400/ 320	455/ 364	1	EL - Electronic ME - Mechanical
	Generator Set Model	P249-3	P250-3	P275-3	P300-2	P300-3	P313-3	P330-3	P344-3	P375-2	P375-3	P400-3	P438-3	P450-2	P450-3	P500-3	P501-3	EL - Elec

TAA - Turbocharged Air-Air TAW - Turbo Air To Water Charge Cooled

NA - Naturally Aspirated T - Turbocharged

T//// - Tirko AirTo W/stor Charao Coolod

MEDIUM PRODUCT RANGE (225 – 750 KVA)

	elli U3	>	×	×	×	×	×	×	×	×
	Ingress Protection	IP23	IP21							
s .	ssal) noitaluzal	Т	Т	т	т	Т	Т	н	Т	т
Detai	No. of Bearings	-	-	-	-	-	-	1	-	-
Alternator Details	Alternator Model	LL6114F	EG315L-400N	EG315L-360N	EG355M-450N	EG315L-400N	EG355L-500N	EG355M-450N	EG355L-560N	EG355M-450N
	Alternator	LS	Ð	ĘG	ĘG	Ę	Ę	FG	Ę	ĘG
sions	Wet Weight (אם)	3981	3699	3734	4332	3858	4332	4332	4332	4332
Weights & Dimensions	(mm) 14gi9H	2193	2215	2215	2156	2215	2156	2156	2156	2156
hts &	(mm) htti	1481	1131	1131	1461	1131	1461	1461	1461	1461
Weig	(աա) կքնսəղ	3787	3800	3800	3900	3800	3900	3900	3900	3900
c.	(\.h') (dbnst2 zH 0ð			112.7		123.8		138		155.1
umptic	(1/hr) əmir9 zH 0ə			103		113.5		124.9		139.6
Fuel Tank / Consumption	(14/1) (dbnst2 zH 02	113.9	107.4		119.3		133.1		139.9	
iel Tank	50 Hz Prime (۱/hr)	104	97.2		108		120.3		125.6	
۔ بے ا	(1) yneTleuf	1083	888	888	1132	888	1132	1132	1132	1132
	Circuit Breaker	3 Pole MCCB								
	Cooling Sys Capacity (L)	48	58	58	69	58	69	69	69	69
	Total Oil Capacity (L)	62	62	62	55.5	62	62	62	62	55.5
. al	Induction	TAA								
	Governing Type	ш 	ш	ш	ш	ш	ш	ш	ш	ш.
Engine / Electri	Cylinders / Alignment	6 / In-line								
	Ваттегу Сһагдег (А)	70	70	70	70	70	70	70	70	70
	(ν) θρετίοΥ	24	24	24	24	24	24	7 24	24	24
	ləboM ənipn∃	2506D-E15TAG2	2506A-E15TAG2	2506A-E15TAG3	2806A-E18TAG1	2506A-E15TAG4	2806A-E18TAG1A	2806A-E18TAG1A	2806A-E18TAG2	2806A-E18TAG3
	Control Panel	PW1.1+								
	(v) zH 09			480		480		480		480
	(v) zh os	400	400		400		400		400	
Generator Set	(wavava) zH 09 yddnaf2	1		563/450		625/500		688/550		750/ 600
Gene.	(wa\ava) zH 03 9mi19	1		513/410		569/455		625/500		681/ 545
	(wa\/ava) zH 02 yddnst2	550/ 440	550/ 440	1	605/ 484	,	660/ 528	ı	715/ 572	,
	(wavava) zH02 əmin9	500/ 400	500/ 400	1	550/ 440	1	600/ 480	1	650/ 520	'
	Generator Set Model	P550-2	P550-3	P563-3	P605-3	P625-3	P660-3	P688-3	P715-3	P750-3

NA - Naturally Aspirated T - Turbocharged

EL - Electronic ME - Mechanical

TAA - Turbocharged Air-Air TAW - Turbo Air To Water Charge Cooled

FG - FG Wilson Ma - Marelli LS - Leroy Somer

Opt - Optional

LARGE PRODUCT RANGE (> 730 KVA)

	eoneilqmoD elll U3	×	×	×	×	×	×	×	×	×	×	×	×	
	Ingress Protection	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	IP23	
sli	ssel) noiteIuenl	I	т	т	т	т	Т	т	т	т	т	Т	т	
r Detai	No. of Bearings	-	-	-	-	-	-	-	-	-	-	-	-	
Alternator Details	IsboM roternator	LL7224J	LL7224L	LL7224N	LL7224P	LL8224H	LL8224H/L	LL8224L/P	LL8224N	LL9324F	LL9224F	LL9224F	LL9224H	
	Alternator	LS	LS	LS	LS	LS	LS	LS	LS	LS	LS	LS	ΓS	
ions	(kg) theight (kg)	5934	5995	6820	6820	7753	6206	697	10385	11207	15455	15455	15680	
imensi	(mm) thgi9H	2379	2379	2227	2227	2069	2450	2450	2435	2453	3020	3020	3020	
Weights & Dimensions	(mm) dtbiW	1690	1690	2162	2162	2257	1895	1895	1900	2192	2300	2300	2300	
Weig	(աա) կքնսәղ	4280	4280	4976	4967	4789	4788	4888	5095	5259	5752	5752	5752	
	(۱/۱۱) (dbnet2 zH 0	201.1	224.4				298	324				1		
Imption	(//h/) 9min9 zH 09	174.3	198.9	1		1	266	289			1	1		-
Fuel Tank / Consumption	(141/1) ydbnet2 zH 02	171.8	193.4	214.9	240	266.3	284.9	313.4	326.3	390.2	399.9	419.9	486.8	
uel Tank	(//h/) əmin9 zH 02	157.4	171.2	192.7	214.1	240.1	258	279.2	296.6	349.7	361.5	378.2	425.7	
ц,	Fuel Tank (L)	1494	1494								1			
	Circuit Breaker	3 Pole ACB / MCCB	3 Pole ACB / MCCB	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
	Cooling Sys Capacity (L)	123	123	123	123	140	196	196	207	207	316	316	316	Leroy Somer
	Total Oil Capacity (L)	106	106	166	166	166	177	177	177	177	238	238	238	- Lero
cal	Induction	TAA	TAA	TAA	TAA	F	F	⊢	TAA	TAA	TAA	TAA	TAA	III LS
Electri	Governing Type		ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	- Mare
Engine / Electrical	Cylinders / Alignment	6 / In-line	6 / In-line	8 / In-line	8 / In-line	8 / In-line	12 / Vee	12 / Vee	12 / Vee	12 / Vee	16 / Vee	16 / Vee	16 / Vee	FG - FG Wilson Ma - Marelli LS
	Battery Charger (A)	55	55	40	40	55	40	40	40	40	40	40	40	- FG V
	Voltage (v)	24	24	24	24	24	24	24	24	24	24	24	24	P P
	ləboM ənipn∃	4006-23TAG2A	4006-23TAG3A	4008TAG1A	4008TAG2A	4008-30TAG3	4012-46TWG2A	4012-46TWG3A	4012-46TAG2A	4012-46TAG3A	4016TAG	4016TAG1A	4016TAG2A	
	Control Panel	PW1.1+	PW1.1+	PW1.1+	PW1.1+	PW1.1+	PW1.1+	PW1.1+	PW1.1+	PW1.1+	PW1.1+	PW1.1+	PW1.1+	
	(v) zH 09	480	480	1			480	480			I.	1		
et	(v) zH 05	400	400	400	400	400	400	400	400	400	400	400	400	
Generator Set	(wa/ava) zH 03 ydbnst2	844/ 675	938/ 750	ı.			1375/ 1100	1500/ 1200			1	ı.		
Gen	(wʌ/ʌvʌ) zH 0ð əmiŋ٩	735/ 588	835/ 668	1	1	1	1250/ 1000	1350/ 1080	i.		I.	ı	1	cal
	(wa\ava) zH 02 ydbnst2	800/ 640	900/ 720	1000/ 800	1100/ 880	1250/ 1000	1375/ 1100	1500/ 1200	1650/ 1320	1875/ 1500	1925/ 1540	2000/ 1600	2249/ 1799	- Mechanic
	(wa/ava) zH02 əmirq	730/ 584	800/ 640	910/ 728	1000/ 800	1125/ 900	1250/ 1000	1350/ 1080	1500/ 1200	1700/ 1360	1750/ 1400	1825/ 1460	2000/ 1600	EL - Electronic ME - Mechanical
	Generator Set Model	P730P1 / P800E1	P800P1 / P900E1	P910P1/ P1000E1	P1000P1 / P1100E1	P1125P1 / P1250E1	P1250P3 / P1375E3	P1350P1 / P1500E1	P1500P3 / P1650E3	P1700P1 / P1875E1	P1750/ P1925E	P1825/ P2000E	P2000 / P2250E	EL - Eleci

TAA - Turbocharged Air-Air TAW - Turbo Air To Water Charge Cooled

NA - Naturally Aspirated T - Turbocharged

12

LARGE PRODUCT RANGE (> 730 KVA)

	eonsilqmo) sIII U3	×	×	×
	Ingress Protection	IP23	IP23	IP23
	ssel) noiteluzal	Ξ	Н	т
. Detai	No. of Bearings	-	1	-
Alternator Details	Alternator Model	LL9324F	LL9324H	LL9324P
	Alternator	LS	LS	LS
ions	Wet Weight (אפ)	12528	12528	13380
Jimens	Height (mm)	2605	2605	2900
Weights & Dimensions	(mm) dtbiW	2176	2176	2180
Weig	(աա) կքնսәๅ	5839	5839	6038
	(14/1) ydbnet2 zH 0∂	,	ı.	
umptio	(/hr) 9mir9 zH 09	,	,	
Fuel Tank / Consumption	(141/1) Ydbnet2 zH 02	410.8	470.8	528.4
uel Tank	50 Hz Prime (۱/۸۲)	385.4	418.1	470.6
ц,	Fuel Tank (L)	,	ı	1
	Circuit Breaker	Opt	Opt	Opt
	Cooling Sys Capacity (L)	315	315	400
	Total Oil Capacity (L)	238	238	238
gal	Induction	TAW	TAW	TAW
Electric	Governing Type	ш	ш	ш
Engine / Electrical	Cylinders / Alignment	16 / 60° Vee	16 / 60° Vee	16 / 60° Vee
	Ваттегу Сһагдег (A)	5.5	55	55
	(v) abetioV	24	24	24
	ləboM ənign∃	4016-61TRG1	4016-61TRG2	4016-61TRG3
	Control Panel	PW1.1+	PW1.1+	PW1.1+
	(v) zH 09	1	I.	ı
ţ	(v) zH OS	400	400	400
Generator Set	(wy/avy) zH 0ð ydbnøt2	,	1	,
Gene	Prime 60 Hz (kva/kw)	1	T	1
	(wy/avy) zH 02 yddnas2	2000/ 1600	2250/ 1800	2500/ 2000
	(wa/ava) zH 02 əmitq	1850/ 1480	2000/ 1600	2250/ 1800
	ləboM tə2 rotarənəD	P2000-1 / P2000-1E	P2250-1 / P2250-1E	P2500-1 / P2500-1E

EL - Electronic ME - Mechanical

FG - FG Wilson Ma - Marelli LS - Leroy Somer TAA - Turbocharged Air-Air TAW - Turbo Air To Water Charge Cooled

Opt - Optional

BRAZIL SOURCED PRODUCT RANGE

	epresidanoD slll UB													
	Ingress Protection	IP21	IP21	IP21	IP21	IP21	IP21	IP21	IP21	IP21	IP21	IP21	IP21	IP21
ils	ssel) noiteluenl	т	т	н	Т	т	т	Т	т	Т	Т	Т	т	т
r Detai	No. of Bearings	-	-	1	-	-	-	-	-	1	-	-	-	-
Alternator Details	leboM roternatiA	GTA 201 AE20	GTA 202 AE32	GTA 202 AE36	GTA 202 AS36	GTA 251 AE27	GTA 252 AE37	GTA 252 Al44	GTA 311 Al41	GTA 311 Al41	GTA 312 AE49	GTA 312 AE52	GTA 311 AE41	GTA 312 AEDI
	Alternator	MEG	MEG	MEG	MEG	MEG	MEG	MEG	MEG	WEG	MEG	MEG	MEG	WEG
SI	Wet Weight (ایع)	826	828	1032	1083	1443	1563	1775	2953	2953	3775	3825	3598	4162
limension	(mm) thgi9H	1333	1333	1333	1376	1544	1640	1700	2075	2075	2215	2215	2215	2156
Weights & Dimensions	(mm) dībiW	760	760	840	068	1010	1010	1030	1120	1120	1131	1131	1131	1461
We	(աա) կքնսəղ	1680	1741	1870	1980	2450	2510	2512	3480	3480	3800	3800	3800	3900
c	(א ויו) vdbnet2 zH 03	13.6	17.7	23.6	29.3	37.8	48.7	57.4	88.8	113.1	1	1	111.2	I.
Fuel Tank / Consumption	(1/hr) 9min9 zH 0ð	11.9	16.2	21.2	26.1	33.1	45.2	50.0	80.4	100.7			101.7	
/ Const	(14/I) {dpuet2 zH 02	12.0	14.9	20.1	24.5	34.0	43.3	1	1		104.1	110.9	1	120.1
el Tank ,	50 Hz Prime (I/hr)	10.8	13.7	18.2	22.2	30.3	40.1	1			94.9	100.2	1	107.9
Fue		145	145	180	218	327	394	457	250	250	888	888	888	1132
	Circuit Breaker	3 Pole MCB / 3 Pole MCCB	3 Pole MCB / 3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB
	Cooling Sys Capacity (L)	10.2	10.2	13.0	17.5	21.0	27.0	15.7	48	48	58.1	58.1	58.1	68.5
	Total Oil Capacity (L)	8.3	 8	8.0	8.0	16.5	16.5	18.7	45	45	62	62	62	55.5
ical	Induction	⊢	F	Τ	TAA	F	TAA	TAA	TAA	TAA	TAA	TAA	TAA	TAA
/ Electr	Governing Type	ME	ME	ME	ΕΓ	ME	ME	ME	Ξ	EL	EL	E	ΕΓ	EL
Engine / Electrical	Cylinders / Alignment	3 / In-line	3 / In-line	4 / In-line	4 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line
	Ваttery Сһагдег (А)	65	65	65	65	65	85	80	100	100	70	70	70	70
	Voltage (v)	12	12	12	12	12	12	24	24	24	1 24	2 24	3 24	1 24
	ləboM ənign∃	1103A-33TG1	1103A-33TG2	1104A-44TG2	1104C-44TAG2	1106A-70TG1	1106A-70TAG3	MWM 7.3P	DC13072A	DC13072A	2506A-E15TAG1	2506A-E15TAG2	2506A-E15TAG3	PW1.1+ 2806A-E18TAG1
	Control Panel	PW1.1	PW1.1	PW1.1	PW1.1	PW1.1	PW1.1	PW1.1	ı	I	PW1.1+	PW1.1+	PW1.1+	PW1.1+
	(v) zH 09	220	220	220	220	220	220	220	254	254	i.		220	
et	(v) zH 05	380	380	380	380	380	380			I	380	380	1	380
Generator Set	(wa/ava) zH 03 ydbnst2	56.3 / 45.0	75.0 / 60.0	100.0 / 80.0	125.0 / 100.0	168.8 / 135.0	217.5 / 174.0	260 / 208	450 / 360	550 / 440			562.5 / 450	
Gen	(wʌ/ʌvʌ) zH 0ð əmir¶	50.0 / 40.0	68.8 / 55.0	90.0 / 72.0	113.0 / 90.4	149.5 / 119.6	196.3 / 157.0	240 / 192	410 / 328	500 / 400	I		512.5 / 410	
	(wy/avy) zH 02 ydbnst2	50.0 / 40.0	65.0 / 52.0	88.0 / 70.4	110.0 / 88.0	150.0 / 120.0	200.0 / 160.0	1		I.	500 / 400	550 / 440	ı	605 / 484
	Prime 50 Hz (kvv/kw)	45.0 / 36.0	60.0 / 48.0	80.0 / 64.0	100.0 / 80.0	135.0 / 108.0	180.0 / 144.0			ı.	455 / 364	500 / 400		550 / 440
	Generator Set Model	P56-1	P75-1	P100-1	P125-1	P169-1	P218-3	M260-1	S450-1	S550-1	P500-5	P550-5	P563-5	P605-5

FG - FG Wilson Ma - Marelli LS - Leroy Somer TAA - Turbocharged Air-Air TAW - Turbo Air To Water Charge Cooled

NA - Naturally Aspirated T - Turbocharged

EL - Electronic ME - Mechanical

BRAZIL SOURCED PRODUCT RANGE

	eonailqmoD alll UB					
	Ingress Protection	IP21	IP21	IP21	IP21	IP21
- -	ssel) noiteluzul	Ξ	т	т	т	т
⁻ Detai	No. of Bearings	-	1	1	-	-
Alternator Details	Alternator Model	GTA 311 AE41	GTA 312 AEDJ	GTA 312 AE47	GTA 312 AEDJ	GTA 312 AEDK
	Alternator	MEG	WEG	WEG	WEG	WEG
	Wet Weight (אפ)	3598	4182	4051	4182	4102
imensior	(mm) thgiəH	2215	2156	2156	2156	2156
Weights & Dimensions	(աա) դեթiW	1131	1461	1461	1461	1461
We	(աա) կքնսәղ	3800	3900	3900	3900	3900
c	(/1/I) (dbnst2 zH 0ð	124.4	i.	136.3	i.	
imptio.	60 Hz Prime (I/hr)	113.3	1	122.7	1	
/ Consu	(1/hr) ydbnet2 zH 02		132.9	1	141	153.7
Fuel Tank / Consumption	50 Hz Prime (۱/۱۳)		119.9	ı	126.2	138.8
Fue	(L) AngT ləu ⁷	888	1132	1132	1132	1132
	Circuit Breaker	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB	3 Pole MCCB
	Cooling Sys Capacity (L)	58.1	68.5	68.5	68.5	68.5
	Total Oil Capacity (L)	62	62	62	62	62
cal	Induction	TAA	TAA	TAA	TAA	TAA
Electri	9qvT gnin19voD		E	E		E
Engine / Electrica	Cylinders / Alignment	6 / In-line	6 / In-line	6 / In-line	6 / In-line	6 / In-line
	Вәttеrу Сһагдег (A)	70	70	70	70	70
	(v) 906710V	24	24	24	24	24
	ləboM ənipn3	PW1.1+ 2506A-E15TAG4	2806A-E18TA- G1A	2806A-E18TA- G1A	PW1.1+ 2806A-E18TAG2	PW1.1+ 2806A-E18TAG3
	Control Panel	PW1.1+	PW1.1+	PW1.1+	PW1.1+	PW1.1+
	(v) zH 09	220	1	220	1	220
et	(v) zH 0S	1	380	I	380	1
Generator Set	(wʌ/ʌvʌ) zH 0ð ydbnɛt2	625 / 500	i.	687.5 / 550	i.	750 / 600
Gen	(wa/ava) zH 06 9min9	568.8 / 455	1	625 / 500	1	681.3 / 545
	(wy/ava) zH 02 (dbnst2		660 / 528	ı	700 / 560	ī
	Prime 50 Hz (kva/kw)		600 / 480	ı	635 / 508	,
	Generator Set Model	P625-5	P660-5	P688-5	P700-5	P750-5

FG - FG Wilson Ma - Marelli LS - Leroy Somer

NA - Naturally Aspirated T - Turbocharged

EL - Electronic ME - Mechanical

PROFESSIONAL RENTAL OPERATOR

Designed for users seeking lower cost solutions to meet their temporary power needs, our dedicated Professional Rental Operator (PRO) range provides fuel efficient, easy to operate and robust generator sets ideally suited to meet the rigorous requirements of your temporary power needs globally.

Providing a flexible solution, they can be easily switched between 50 and 60 Hz, while maintaining emissions and noise certification at both frequencies, allowing one machine to satisfy varying load requirements across diverse applications.

Our fully sound attenuated enclosures have excellent noise reduction ensuring their suitability for residential projects, while advanced controller options enable multiple utilisations including stand alone or synchronisation.

Key Features of the PRO range include:

- » EUIIIa compliance
- » Fuel optimised offering
- » 50 Hz / 60 Hz switchable
- » Viscous clutch fan drive
- » Exceptional noise performance
- » New PowerWizard 2.1+ as standard

	Generator Technical Data										
			50	Hz	60	Hz					
Model	Engine	Alternator	kVA	kW	kVA	kW					
PRO100-2	1104D-E44TAG2	LL3114F	100	80	100	80					
PRO150-1	1106A-70TAG2	LL3114J	150	120	173	172					
PRO150-2	1106D-E70TAG3	LL3114J	150	120	185	148					
PRO275-2	1506D-E88TAG4	LL5114J	275	220	344	275					
PRO300-1	1506A-E88TAG4	LL5100	300	240	344	275					
PRO500-1	2506A-E15TAG2	LL6114F	500	400	525	420					
PRO500-2	2506D-E15TAG2	LL6114F	500	400	525	420					

Ratings are based on maximum generator set output – this may vary depending on voltage code selected.

		G	ienerator Dimension	5	
Model	Length (mm)	Width (mm)	Height (mm)	Weight (kg) Lube oil & Coolant	Weight (kg) Lube oil, Coolant & Fuel
PRO100-2	2770	1120	1847	2027	2456
PRO150-1	3620	1120	2226	2547	3124
PRO150-2	3620	1120	2226	2547	3124
PRO275-2	4065	1400	2124	3880	4518
PRO300-1	4065	1400	2124	3880	4518
PRO500-1	4930	1620	2167	5288	5986
PRO500-2	5100	1920	2300	5977	6879

	Engine	echnical Data		
Model	PRO100-1	PRO150	PRO275/300	PRO500
Engine (rpm)	1500 / 1800	1500 / 1800	1500 / 1800	1500 / 1800
Bore (mm)	105	105	112	137
Stroke (mm)	127	135	149	171
Displacement (L)	4.4	7.01	8.8	15.2
Compression Ratio	16.7:1	18.2:1	16.1:1	16:1

		Alternator Te	chnical Data		
Model	PRO100-2	PRO150	PRO275-2	PRO300-1	PRO500
Frame size	LL3114F	LL3114J	LL5114J	LL5100	LL6114F
Pitch	2/3	2/3	2/3	2/3	2/3
No of poles	4	4	4	4	4
Insulation class	Н	Н	Н	Н	н
IP Rating	IP23	IP23	IP23	IP23	IP23
Excitation	Brushless, Self excited				
No of bearings	Single bearing				

CONTROL IS EVERYTHING

We've always believed that control systems are among the most important components of a generator set. From our earliest power projects in the 1970s, designing, building and commissioning mini power stations in the Middle East, we've focused on designing reliable and intuitive control panels which our customers are comfortable working with.

Today FG Wilson generator sets come with a full range of plug and play digital, automatic and synchronising control panel systems. And when your generator set needs something special, we'll design and validate bespoke control systems just for you.

Our control and load management options include:

- » Multiple genrator set synchronisation
- » Co-generation mains parallel
- » Intelligent transfer systems
- » Human Machine Interface (HMI) displays
- » Utility protection
- » Remote monitoring
- » Sophisticated high-end building and load management controls assembled around Programmable Logic Controllers (PLCs)

We promise you one thing: although our panels might be complex on the inside, on the outside you'd never know it.

LOAD TRANSFER PANELS

The FG Wilson range of intelligent Load Transfer Panels constantly monitor the quality of your mains electricity supply and respond immediately to any power outages. With flexible, upgradeable options and a high level of functionality, FG Wilson transfer panels give you 24-hour automatic control of your standby generator set, 365 days a year.

Features

- » Automatic and manual operation
- » Automatically provides generator set start signal upon detection of mains failure, overvoltage or loss of phase
- » Automatic mains re-transfer function
- » Flexible, upgradeable options
- » Test operations and sequences accessible from panel or remotely
- » Manual switch operation possible via external handle
- » LED functions display showing generator set / mains availability and switch position
- » LCD display for voltage and timers
- » Load transfer panel range meets ATS IEC 60947-6-1 standard

Benefits

- » Fully automatic mains failure sensing and generator set start signal
- » Pre-programmed enabling the panel to run on installation with the ability to customise if necessary
- » Fast acting switches reduce transfer times between generator set and utility power
- » Available from 63 3200A
- » Seamless integration with FG Wilson digital control panels

LONGLIFE PRODUCTS

When you buy an FG Wilson generator set, you can be confident that it has undergone extensive prototype testing. Before a new product reaches one of the customers, it has seen rigorous testing on load acceptance, cooling, vibration, noise and water ingress. We don't accept engine performance data without validating it ourselves in the environmental conditions which our products will see. When you buy one of our products, we can safely say that wherever it will be operating, it will have been tested for that environment.

Our validation facilities include Europe's largest fully automated hemi-anechoic chamber with state-of-theart acoustic research and test capabilities. Eleven witness test cells allow us to carry out special testing of open and enclosed generator sets, and high voltage testing and string testing can be offered to simulate conditions when generator sets are installed in the field.

If your generator set is part of a more complex project, our witness and special test facilities can simulate on-site installations, running with their associated equipment, which means you receive a tried and tested power system that works for you.

LIFELONG SUPPORT

FG Wilson is about more than just the metal. Developed over 50 years, we have a local network of almost 400 dealers spread across 150 countries, supporting our customers with everything from product selection to installation and a lifetime of service.

Generator sets are the main business focus for our dealers which means they are true specialists in the assessment of your individual power needs. And our dealers are supported with a wealth of technical assistance, from generator set sizing tools to product data sheets which means they can help you quickly with detailed quotations and specifications.

Our dealers are all trained and supported by us, which makes them experts in serving product maintenance needs, including emergency breakdown coverage and routine servicing. They carry ready stock of parts for hassle-free fast service and are supported by our 100,500 sq ft parts facility, carrying more than 12,000 product lines and shipping 2.2 million parts a year.

GENUINE PARTS

We know of many FG Wilson generator sets which have worked long and productive lives and without exception, the reason is that they have been serviced and maintained by an FG Wilson dealer with FG Wilson Genuine Parts.

All FG Wilson Genuine Parts are fully tested by us and come with our standard warranty. They connect seamlessly with all the other components of your FG Wilson generator set and are fitted by our fully trained dealer network who have full access to our electronic technical library.

Our dealers are trained on supporting the complete generator set, including engine, alternator, controls and auxiliary equipment, and they're there for you 24/7 to offer all the support and service you need.

IBC CERTIFIED GENERATOR SETS

In many parts of the world, seismic certification is becoming a key requirement for generator sets, especially when they are installed in large buildings or facilities in urban areas.

Working together with our dealer FGW Jenerator Turkey, two FG Wilson generator sets (P800 and P1700) now have full IBC seismic certification. Specification includes sound-insulated container type enclosures incorporating seismic specification for the larger generator sets, strengthened baseframes and control panel stands and seismic anti-vibration mounts specially engineered at our Larne facility in the UK.

PRODUCTS AS UNIQUE AS YOU ARE

The standard range of FG Wilson generator sets is designed to meet a very wide range of power needs. But we know there can be a time when you need something a bit special. When that time comes, we have a team of people who will work with you to make a product that's a little or a lot different. This might include:

- » Special control and synchronisation systems
- » Acoustic enclosures
- » High Voltage generator sets
- » Special cooling
- » Gas generator sets
- » Bi-Fuel generator sets

When you entrust your power project to us, you receive the full support of more than 300 skilled technicians who nurture your project from initial design and manufacture through to installation and commissioning. And once installed, you can count on a lifetime of service from our network of dealers.

Witness Testing

Before your custom generator set leaves our factory, it's rigorously tested at one of our eleven witness test cells with resistive load capacity up to 12 mW and inductive load of 3 mVA.

We offer high voltage testing up to 5 mVA at 13.8 kV to simulate conditions when generator sets are installed in the field. And we carry out testing to simulate the on site installation of multiple generator sets running with their associated equipment. We also test cooling system performance, control system, vibration, sound and fuel consumption.

DELIVERING PRIME POWER IN DUBAI

When it comes to environmental extremes, you don't get much harsher than the deserts of Dubai. With soaring temperatures, this was the backdrop for FG Wilson (Engineering) FZE's challenging defence installation project, located deep in the heart of the Dubai desert.

With no infrastructure in place to connect to the grid supply, FG Wilson (Engineering) FZE were tasked with setting up an independent 7.5 MVA power plant, the only source of power to the defence camp.

The complete pre-sales engineering, including a selection of switchgear, synchronising controls, fuel system, yard lighting, earthing etc was carried out by a specialist application engineering team, supported by the FG Wilson Power Solutions team.

A quick turn around was crucial for this fast track project, since no power supply existed on the ground. FG Wilson were able to deliver a complete turnkey package consisting of 5 x P1500P3 containerised generator sets, installed, tested, commissioned and handed over to the customer within just 3 months.

Since completion, FG Wilson technicians have been maintaining the power plant on a 24/7 basis. With stringent Key Performance Indicators in place, even a 30 second glitch needs to be reported to the client.

Speaking about the project, Naveen D'Souza from FG Wilson FZE comments;

"Based on our excellent engineering and aftersales support, FG Wilson was the preferred brand for this prestigious project. The customer had previous experience of our services and combined with our strong engineering capabilities and sourcing techniques, we were successful in securing this contract.

"Since installation we have carried out two top overhauling services and one major overhauling service, which has helped to maintain the plant without any major breakdowns.

"We faced several challenges due to the site location, deep in the desert. With other camps in the vacinity there was a shortage of work space. We also had to use 6x4 trucks for travelling on the sandy terrain and high boom cranes to transport and move the gererator sets on foundations."

Naveen concludes;

"As of today the generator sets have clocked an average of 28,000 hours since they were put in operation, synchronised together and working in load dependent start/stop philosophy. During the summer and in extereme heat conditions, 4 generator sets work continuously with one unit as standby. In other months 3-4 generator sets continue to operate based on the site load.

"This project showcases the FG Wilson ability to deliver a 24/7 reliable prime power solution and support in the most extreme circumstances."

www.fgwilson.com